A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.

نویسندگان

  • Anyi Mei
  • Xiong Li
  • Linfeng Liu
  • Zhiliang Ku
  • Tongfa Liu
  • Yaoguang Rong
  • Mi Xu
  • Min Hu
  • Jiangzhao Chen
  • Ying Yang
  • Michael Grätzel
  • Hongwei Han
چکیده

We fabricated a perovskite solar cell that uses a double layer of mesoporous TiO2 and ZrO2 as a scaffold infiltrated with perovskite and does not require a hole-conducting layer. The perovskite was produced by drop-casting a solution of PbI2, methylammonium (MA) iodide, and 5-ammoniumvaleric acid (5-AVA) iodide through a porous carbon film. The 5-AVA templating created mixed-cation perovskite (5-AVA)x(MA)1- xPbI3 crystals with lower defect concentration and better pore filling as well as more complete contact with the TiO2 scaffold, resulting in a longer exciton lifetime and a higher quantum yield for photoinduced charge separation as compared to MAPbI3. The cell achieved a certified power conversion efficiency of 12.8% and was stable for >1000 hours in ambient air under full sunlight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer.

By the introduction of an organic silane self-assembled monolayer, an interface-engineering approach is demonstrated for hole-conductor-free, fully printable mesoscopic perovskite solar cells based on a carbon counter electrode. The self-assembled silane monolayer is incorporated between the TiO2 and CH3NH3PbI3, resulting in optimized interface band alignments and enhanced charge lifetime. The ...

متن کامل

Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode

A mesoscopic methylammonium lead iodide (CH₃NH₃PbI₃) perovskite/TiO₂ heterojunction solar cell is developed with low-cost carbon counter electrode (CE) and full printable process. With carbon black/spheroidal graphite CE, this mesoscopic heterojunction solar cell presents high stability and power conversion efficiency of 6.64%, which is higher than that of the flaky graphite based device and co...

متن کامل

Fully printable transparent monolithic solid-state dye-sensitized solar cell with mesoscopic indium tin oxide counter electrode.

We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 μm, this very simple and fully printable...

متن کامل

Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%

We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with stand...

متن کامل

Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell

In this work we used CH3NH3PbInBr3−n (where 0 ≤ n ≤ 3) as hole conductor and light harvester in the solar cell. Various concentrations of methylammonium iodide and methylammonium bromide were studied which reveal that any composition of the hybrid CH3NH3PbInBr3−n can conduct holes. The hybrid perovskite was deposited in two steps, separating it to two precursors to allow better control of the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 345 6194  شماره 

صفحات  -

تاریخ انتشار 2014